Further Pure Maths 2

Chapter review 8

1

$r=a\left(1+\frac{1}{2} \sin \theta\right)$

$$
\text { Area }=\frac{1}{2} a^{2} \int_{0}^{2 \pi}\left(1+\frac{1}{2} \sin \theta\right)^{2} \mathrm{~d} \theta
$$

$$
=\frac{a^{2}}{2} \int_{0}^{2 \pi}\left(1+\sin \theta+\frac{1}{4} \sin ^{2} \theta\right) \mathrm{d} \theta
$$

$$
=\frac{a^{2}}{2} \int_{0}^{2 \pi}\left(\frac{9}{8}+\sin \theta-\frac{\cos 2 \theta}{8}\right) \mathrm{d} \theta
$$

2 a,b

c $\quad O B=2 a \sec \alpha$

$$
O A=a(1+\cos \alpha)
$$

$$
2 O A=O B \Rightarrow 1+\cos \alpha=\sec \alpha
$$

$$
\cos ^{2} \alpha+\cos \alpha-1=0
$$

$$
\cos \alpha=\frac{-1 \pm \sqrt{1+4}}{2}
$$

$\therefore \alpha$ is acute.

$$
\cos \alpha=\frac{\sqrt{5}-1}{2}
$$

3 First find P :

$$
\begin{aligned}
1+\cos \theta & =3 \cos \theta \\
1 & =2 \cos \theta \\
\Rightarrow \quad \theta & =\operatorname{arcos} \frac{1}{2}=\frac{\pi}{3}
\end{aligned}
$$

By symmetry the required area $=2\left(R_{1}+R_{2}\right)$

$$
\begin{aligned}
R_{1} & =\frac{1}{2} \int_{0}^{\frac{\pi}{3}}(1+\cos \theta)^{2} \mathrm{~d} \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{3}}\left(1+2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta \\
R_{1} & =\frac{1}{2} \int_{0}^{\frac{\pi}{3}}\left(\frac{3}{2}+2 \cos \theta+\frac{\cos 2 \theta}{2}\right) \mathrm{d} \theta \\
& =\frac{1}{2}\left[\frac{3}{2} \theta+2 \sin \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\frac{\pi}{3}} \\
& =\frac{1}{2}\left[\left(\frac{\pi}{2}+2 \sin \frac{\pi}{3}+\frac{1}{4} \sin \frac{2 \pi}{3}\right)-(0)\right] \\
& =\frac{1}{2}\left[\frac{\pi}{2}+\sqrt{3}+\frac{\sqrt{3}}{8}\right]=\frac{\pi}{4}+\frac{9 \sqrt{3}}{16} \\
R_{2} & =\frac{9}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos ^{2} \theta \mathrm{~d} \theta=\frac{9}{4} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(1+\cos 2 \theta) \mathrm{d} \theta \\
& =\frac{9}{4}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}=\frac{9}{4}\left[\left(\frac{\pi}{2}+0\right)-\left(\frac{\pi}{3}+\frac{\sqrt{3}}{4}\right)\right] \\
& =\frac{3 \pi}{8}-\frac{9 \sqrt{3}}{16}
\end{aligned}
$$

\therefore Area required $=2\left(\frac{3 \pi}{8}+\frac{\pi}{4}\right)=\frac{5 \pi}{4}$

4
$r^{2}=a^{2} \sin 2 \theta \quad$ (must have $\sin 2 \theta \geqslant 0$)

$$
r=a \sqrt{\sin 2 \theta}
$$

$$
x=r \cos \theta=a \cos \theta \sqrt{\sin 2 \theta}
$$

$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=0 \Rightarrow 0=-\sin \theta \sqrt{\sin 2 \theta}+\frac{1}{2} \cos \theta \frac{1}{\sqrt{\sin 2 \theta}} 2 \cos 2 \theta$
i.e. $\quad 0=-\sin \theta \times \sin 2 \theta+\cos \theta \cos 2 \theta$
i.e. $0=\cos 3 \theta$
$\therefore \quad 3 \theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{7 \pi}{2}$
$\therefore \quad \theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{7 \pi}{6}$
So $\left(a \sqrt{\frac{\sqrt{3}}{2}}, \frac{\pi}{6}\right),\left(a \sqrt{\frac{\sqrt{3}}{2}}, \frac{7 \pi}{6}\right)$ and $\left(0, \frac{\pi}{2}\right)$
5 a $\quad \theta=\frac{\pi}{2}$

b Area $=2 \times \frac{1}{2} \int_{0}^{\frac{\pi}{4}} 16 \cos ^{2} 2 \theta \mathrm{~d} \theta$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{4}}(8+8 \cos 4 \theta) \mathrm{d} \theta \\
& =[8 \theta+2 \sin 4 \theta]_{0}^{\frac{\pi}{4}} \\
& =2 \pi+0-0 \\
& =2 \pi
\end{aligned}
$$

6

Max r is $2 a$ at point ($2 \mathrm{a}, \pi$)

7 a

b Area $=\frac{1}{2} \int_{\frac{\pi}{12}}^{\frac{\pi}{4}} 4 \cos ^{2} 2 \theta$

$$
\begin{aligned}
& =\int_{\frac{\pi}{12}}^{\frac{\pi}{4}}(1+\cos 4 \theta) \mathrm{d} \theta \\
& =\left[\theta+\frac{1}{4} \sin 4 \theta\right]_{\frac{\pi}{12}}^{\frac{\pi}{4}} \\
& =\left(\frac{\pi}{4}+0\right)-\left(\frac{\pi}{12}+\frac{1}{4} \sin \frac{\pi}{3}\right) \\
& =\frac{\pi}{6}-\frac{1}{4} \times \frac{\sqrt{3}}{2} \\
& =\frac{\pi}{6}-\frac{\sqrt{3}}{8}
\end{aligned}
$$

8 a

$$
\begin{aligned}
r & =2 \sec \theta \\
r \cos \theta & =2 \\
x & =2
\end{aligned}
$$

b $x=2$ is a diameter
$r=\sqrt{2^{2}+2^{2}}=2 \sqrt{2}$

So polar coordinates are

$$
\left(2 \sqrt{2}, \frac{\pi}{4}\right)\left(2 \sqrt{2},-\frac{\pi}{4}\right)
$$

9 a $a(1+\cos \theta)=3 a \cos \theta$

$$
\begin{aligned}
1 & =2 \cos \theta \\
\cos \theta & =\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}
\end{aligned}
$$

So P is $\left(\frac{3}{2} a, \frac{\pi}{3}\right)$

Further Pure Maths 2

9 b Area $=\frac{a^{2}}{2} \int_{0}^{\frac{\pi}{3}}\left(\frac{3}{2}+2 \cos \theta+\frac{\cos 2 \theta}{2}\right) \mathrm{d} \theta+\frac{9}{2} a^{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos ^{2} \theta \mathrm{~d} \theta$

$$
\begin{aligned}
& =\frac{a^{2}}{2}\left[\frac{3}{2} \theta+2 \sin \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\frac{\pi}{3}}+\frac{9}{4} a^{2}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} \\
& =\frac{a^{2}}{2}\left[\frac{\pi}{2}+\sqrt{3}+\frac{\sqrt{3}}{8}\right]+\frac{9}{4} a^{2}\left[\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right] \\
& =\frac{5 \pi}{8} a^{2}
\end{aligned}
$$

10 a

$$
\begin{aligned}
r^{2} & =\sec 2 \theta \\
r^{2} \cos 2 \theta & =1 \\
r^{2}\left(2 \cos ^{2} \theta-1\right) & =1 \\
2 r^{2} \cos ^{2} \theta & =1+r^{2} \\
2 x^{2} & =1+x^{2}+y^{2} \\
\therefore \quad y^{2} & =x^{2}-1
\end{aligned}
$$

b

$$
r^{2}=\operatorname{cosec} 2 \theta
$$

$$
\Rightarrow \quad r^{2} \sin 2 \theta=1
$$

$$
\Rightarrow 2 r \sin \theta r \cos \theta=1
$$

$$
\Rightarrow \quad 2 x y=1
$$

$$
y=\frac{1}{2 x}
$$

11 a $|z-1-\mathrm{i}|=\sqrt{2}$ is a circle centred at $(1,1)$ with radius $\sqrt{2}$.

b The Cartesian equation of a circle centred at $(1,1)$ with radius $\sqrt{2}$ is $(x-1)^{2}+(y-1)^{2}=2$.
Converting this to polar coordinates gives $(r \cos \theta-1)^{2}+(r \sin \theta-1)^{2}=2$ which simplifies to $r=2 \cos \theta+2 \sin \theta$ when $r \neq 0$.

Further Pure Maths 2

11 c The set of points $A=\left\{z: \frac{\pi}{6} \leqslant \arg z \leqslant \frac{\pi}{2}\right\} \cap\{z:|z-1-i| \leqslant \sqrt{2}\}$ is the green sector of the circle. It represents the intersection of all possible $\arg z$ such that $\frac{\pi}{6} \leqslant \arg z \leqslant \frac{\pi}{2}$ and the red circle which represents all z such that $|z-1-i| \leqslant \sqrt{2}$.

d In order to find the area of the region bounded between the lines $\theta=\frac{\pi}{6}, \theta=\frac{\pi}{2}$ and the arc A, we calculate

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(2 \cos \theta+2 \sin \theta)^{2} \mathrm{~d} \theta \\
& =2 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(\cos \theta+\sin \theta)^{2} \mathrm{~d} \theta \\
& =2 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(1+2 \cos \theta \sin \theta) \mathrm{d} \theta \\
& =2 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(1+\sin 2 \theta) \mathrm{d} \theta \\
& =2\left[\theta-\frac{\cos 2 \theta}{2}\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\
& =2\left(\frac{\pi}{3}+\frac{3}{4}\right) \\
& \approx 3.59(3 \text { s.f. })
\end{aligned}
$$

Further Pure Maths 2

12 In order to find the area of the shaded region, we must find the area of the sector bounded by the curve and the line $O A$, then subtract the area of the triangle $O A B$. The value of θ at the point A can be found by solving $r=4 \cos 2 \theta=2$, leading to $\theta=\frac{\pi}{6}$.
We now find the area of the sector bounded by the curve and the line $O A$.

$$
\begin{aligned}
A_{\text {sector }} & =\frac{1}{2} \int_{0}^{\frac{\pi}{\frac{2}{2}}}(4 \cos 2 \theta)^{2} \mathrm{~d} \theta \\
& =8 \int_{0}^{\frac{\pi}{2}}\left(\cos ^{2} 2 \theta\right) \mathrm{d} \theta \\
& =4 \int_{0}^{\frac{\pi}{6}}(\cos 4 \theta+1) \mathrm{d} \theta \\
& =4\left[\left(\frac{1}{4} \sin 4 \theta+\theta\right)\right]_{0}^{\frac{\pi}{6}} \\
& =\frac{\sqrt{3}}{2}+\frac{2 \pi}{3} \\
& \approx 2.9604
\end{aligned}
$$

Now we find the area of the triangle $O A B$ by using the formula

$$
\begin{aligned}
\text { Area }_{O A B} & =\frac{1}{2} \times \text { Base } \times \text { Height } \\
& =\frac{1}{2}\left|x_{A} \| y_{A}\right|
\end{aligned}
$$

where
x_{A} is the x coordinate of A and
x_{B} is the y coordinate of A.

$$
\begin{aligned}
\text { Area }_{O A B} & =\frac{1}{2}\left|x_{A}\right|\left|y_{A}\right| \\
& =\frac{1}{2}|r \cos \theta \| r \sin \theta| \\
& =\frac{1}{2}|4 \cos 2 \theta \cos \theta \| 4 \cos 2 \theta \sin \theta| \\
& =8\left|\cos \frac{\pi}{3} \cos \frac{\pi}{6} \| \cos \frac{\pi}{3} \sin \frac{\pi}{6}\right| \\
& =\frac{\sqrt{3}}{2} \\
& \approx 0.86603
\end{aligned}
$$

Thus, the area of the shaded region is found to be

$$
\begin{aligned}
A & =\text { Area }_{\text {sector }}-\text { Area }_{\text {OAB }} \\
& \approx 2.9604-0.86603 \\
& \approx 2.09 \text { (3 s.f.) }
\end{aligned}
$$

Further Pure Maths 2

13 First we need to find the point for which the tangent to the curve is perpendicular to the initial line. We form an expression for x and differentiate with respect to θ.

$$
\begin{aligned}
x & =r \cos \theta \\
& =4 \sin 2 \theta \cos \theta \\
\frac{\mathrm{~d} x}{\mathrm{~d} \theta} & =8 \cos 2 \theta \cos \theta-4 \sin 2 \theta \sin \theta \\
& =8\left(2 \cos ^{2} \theta-1\right) \cos \theta-8 \cos \theta \sin ^{2} \theta \\
& =24 \cos ^{3} \theta-16 \cos \theta \\
& =8 \cos \theta\left(3 \cos ^{2} \theta-2\right)
\end{aligned}
$$

We now solve equal to 0 in order to find our required θ values. We choose to neglect the solutions arising from the $\cos \theta=0$ factor, since a tangent at the origin is not what we are looking for, even though it is perpendicular to the initial line.
So, $3 \cos ^{2} \theta-2=0$ gives $\cos \theta= \pm \sqrt{\frac{2}{3}}$ and we choose to neglect the negative solution since $0 \leqslant \theta \leqslant \frac{\pi}{2}$.
Thus our tangent perpendicular to the initial line occurs at $\theta=\theta_{A}=\arccos \left(\sqrt{\frac{2}{3}}\right)$.
To find the area of the region, we will need to find the area of the sector that lies between $0 \leqslant \theta \leqslant \theta_{A}$ as shown in the diagram (red region).

$$
\begin{aligned}
A_{\text {sector }} & =\frac{1}{2} \int_{0}^{\theta_{A}}(4 \sin 2 \theta)^{2} \mathrm{~d} \theta \\
& =8 \int_{0}^{\theta_{A}}\left(\sin ^{2} 2 \theta\right) \mathrm{d} \theta \\
& =4 \int_{0}^{\theta_{A}}(1-\cos 4 \theta) \mathrm{d} \theta \\
& =[4 \theta-\sin 4 \theta]_{0}^{\theta_{A}} \\
& =4 \theta_{A}-\sin 4 \theta_{A} \\
& =4 \arccos \left(\sqrt{\frac{2}{3}}\right)-\sin \left(4 \arccos \left(\sqrt{\frac{2}{3}}\right)\right) \\
& \approx 1.8334 .
\end{aligned}
$$

Further Pure Maths 2

13 (continued)
Now we find the area of the right-angle triangle bounded by the horizontal axis, the tangent and the line $\theta=\theta_{A}$.
Using the formula

$$
\begin{aligned}
A_{t r i} & =\frac{1}{2} \times \text { Base } \times \text { Height } \\
& =\frac{1}{2}|x \| y| \\
& =\frac{1}{2} r^{2}|\cos \theta \| \sin \theta| \\
& =8\left(\sin ^{2} 2 \theta\right)|\cos \theta \| \sin \theta|
\end{aligned}
$$

and substituting in $\theta=\theta_{A}$, we find that $A_{v i}=\frac{64 \sqrt{2}}{27}$.
So our shaded region is

$$
\begin{aligned}
A & =A_{t r i}-A_{\text {sector }} \\
& =\frac{64 \sqrt{2}}{27}-1.8334 \\
& \approx 1.52(2 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

Further Pure Maths 2

Challenge

First we find expressions for x and y in terms of θ.
$x=r \cos \theta=\sqrt{2} \theta \cos \theta$
$y=r \sin \theta=\sqrt{2} \theta \sin \theta$.
Now differentiating with respect to θ we obtain
$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\sqrt{2} \cos \theta-\sqrt{2} \theta \sin \theta$
$\frac{\mathrm{d} y}{\mathrm{~d} \theta}=\sqrt{2} \sin \theta+\sqrt{2} \theta \cos \theta$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sin \theta+\theta \cos \theta}{\cos \theta-\theta \sin \theta}$.
So at $\theta=\frac{\pi}{4}, \sin \theta=\cos \theta=\frac{\sqrt{2}}{2}$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{2}+\frac{\pi}{4} \sqrt{2}}{\sqrt{2}-\frac{\pi}{4} \sqrt{2}}$
$=\frac{4+\pi}{4-\pi}$.
If we use the linear formula $y=m x+c$, we can find a value for c by substituting in values for x and y at $\theta=\frac{\pi}{4}$.
At $\theta=\frac{\pi}{4}$,
$x=\sqrt{2} \theta \cos \theta=\frac{\pi}{4}$
$y=\sqrt{2} \theta \sin \theta=\frac{\pi}{4}$.
So,
$y=m x+c$
$y=\left(\frac{4+\pi}{4-\pi}\right) x+c$
$\frac{\pi}{4}=\left(\frac{4+\pi}{4-\pi}\right) \frac{\pi}{4}+c$
$c=\frac{\pi}{4}\left(1-\frac{4+\pi}{4-\pi}\right)$
$c=\frac{\pi}{2}\left(\frac{\pi}{\pi-4}\right)$
Now we can substitute into the linear equation to obtain
$y=\left(\frac{4+\pi}{4-\pi}\right) x+\frac{\pi}{2}\left(\frac{\pi}{\pi-4}\right)$
$2(\pi-4) y+2(\pi+4) x=\pi^{2}$.

